期刊专题

10.15938/j.jhust.2019.02.013

一种基于正则化判别分析的迁移学习算法

引用
针对大多数基于实例的迁移学习方法容易产生分布参数估计困难和泛化效果差的问题,提出一种正则化判别迁移学习算法.依据判别分析和半监督学习理论,采用核方法和正则化方法,研究了基于正则化的高斯核半监督判别分析方法,以构造修正嵌入空间的方式进行样本迁移.一方面,在映射空间中筛选样本可克服估计分布参数的困难;另一方面,引入伪标记数据和定义距离函数可避免过拟合问题.文本和非文本数据集上的实验结果验证了所提算法能够有效提高迁移的正确率及学习模型的泛化能力.

迁移学习、判别分析、正则化、半监督学习

24

TP181(自动化基础理论)

黑龙江省自然科学基金F2016024

2019-06-06(万方平台首次上网日期,不代表论文的发表时间)

共7页

89-95

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

24

2019,24(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn