期刊专题

10.15938/j.jhust.2018.03.002

深度置信网络对孤立性肺结节良恶性的分类

引用
针对肺部CT图像中孤立性肺结节(SPN)良恶性分类问题,寻求能够有效表示SPN图像的特征,通过适合的分类器实现对SPN良恶性的准确判别.由SPN图像的多分辨率直方图得到768维的特征空间,并将该类特征用于支持向量机(support vector machine,SVM)分类器进行训练,最后取得了令人满意的分类效果.结合深度学习领域中相关知识,将深度置信网络(deep belief network,DBN)用于SPN良恶性分类任务当中.将从肺部CT图像中分割出的SPN图像规整化作为DBN的输入,进行无监督训练;用带有良恶性类标的SPN图像对网络进行微调得到最终的DBN模型;用训练好的DBN模型在测试图像集上进行分类.在实验中选择肺结节患者480例,提取600个SPN图像作为实验数据.将新提出的DBN模型与基于纹理特征和多分辨率直方图特征的SVM模型进行对比,在不考虑医学象征的情况下,DBN模型的识别准确率高达86%,较SVM分类器的分类性能有了显著提升.

CT图像、孤立性肺结节(SPN)、多分辨率直方图、深度置信网(DBN)

23

TP391(计算技术、计算机技术)

黑龙江省自然科学基金F201208

2018-10-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

9-15

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

23

2018,23(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn