期刊专题

10.15938/j.jhust.2018.02.002

VMD与PSO的乐器声音识别

引用
针对乐器音频信号的识别率低的问题,提出了一种变分模态分解(VMD)和被粒子群算法(PSO)优化的支持向量机(SVM)的乐器音频信号识别的方法.采用VMD将乐器音频信号分解成一系列平稳的窄带分量(IMF),并根据相关系数重构信号,采用小波去除残余的噪声.最后,在分析传统的声音特征提取方法基础上,提取梅尔频率倒谱系数(MFCC),用经PSO寻优参数的SVM进行音频信号的分类.实验结果表明,本文算法的去噪效果明显优于经验模态分解(EMD)和集合经验模态分解(EEMD)的分析结果;PSO优化后的SVM有效的提高了噪声环境下音频信号分类的正确率.

变分模态分解、小波去噪、梅尔频率倒谱系数、粒子群算法、支持向量机

23

TP391(计算技术、计算机技术)

新世纪优秀人才基金NCET-12-0809;国家自然科学基金31670717

2018-09-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

6-11

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

23

2018,23(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn