期刊专题

10.15938/j.jhust.2017.04.006

一种新的卷积神经网络的ECT图像重建算法

引用
针对电容层析成像技术(electrical capacitance tomography,ECT)反问题中图像重建困难的问题,研究了将卷积神经网络(convolutional neural network,CNN)应用于ECT图像重建的可行性,在对卷积神经网络中较耗时的深层结构和训练过程问题进行深入研究的基础上,对结构中的卷积层和训练中的子采样方法进行了改进,提出了一种加速收敛卷积神经网络(fast convergent convolutional neural network,FCCNN)的图像重建方法,并通过Matlab在计算机上建立了ECT实验仿真系统,与传统算法的仿真实验结果进行了对比和分析.实验结果表明,改进后的算法对常见管道流型的图像重建效率和质量都有一定的提高.

电容层析成像技术、卷积神经网络、图像重建、子采样、Matlab

22

TP391.41(计算技术、计算机技术)

国家自然科学基金60572153,60972127

2017-10-31(万方平台首次上网日期,不代表论文的发表时间)

共6页

28-33

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

22

2017,22(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn