期刊专题

10.15938/j.jhust.2016.03.010

一种结合自适应惯性权重的混合粒子群算法

引用
粒子群算法(particle swarm optimization,PSO)是一种容易实现且高效的优化算法,但该算法对各种参数反应较为敏感.本文针对经典粒子群算法容易陷入局部最优的不足之处进行研究,提出对经典粒子群算法使用自适应惯性权重并引入模拟退火法的思想来解决经典粒子群优化算法容易陷入局部最优解的问题.仿真实验结果表明,本文提出的混合算法与经典粒子群算法相比,不仅能够避免寻优过程中陷入局部最优问题,而且还具有收敛速度快、成功次数高、稳定性及寻优结果好等特点.

自适应、惯性权重、模拟退火法、粒子群优化、混合算法

21

TP391.4(计算技术、计算机技术)

国家自然科学基金61172149,61402132

2016-08-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

49-53

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

21

2016,21(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn