期刊专题

10.3969/j.issn.1007-2683.2014.02.011

协同视觉信息与标注信息图像聚类

引用
针对如何有效地利用图像视觉信息与标注信息进行图像聚类的问题,提出了一种基于视觉单词与标注单词共生的聚类算法.在视觉特征空间,采用K-means算法对图像聚类,得到表征图像视觉信息的视觉单词,即聚类中心.在图像标注字空间,计算各聚类中心下标注单词的统计分布,建立视觉单词与标注单词共生矩阵,进而针对图像提取嵌入有视觉信息的标注词特征LDA(latent dirichlet allocation)主题模型作为最终聚类算法完成图像的聚类.通过对Pascal VOC 2007标注图像数据库进行的实验仿真以及对比试验结果表明,基于视觉单词与标注单词共生的聚类算法可以有效地利用图像的视觉信息与标注信息的互补特性,提高聚类算法的性能.

聚类、主题模型、视觉单词、标注单词

19

TP391.4(计算技术、计算机技术)

国家自然科学基金61106149;黑龙江省自然科学基金QC2013C060

2014-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

57-62

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

19

2014,19(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn