期刊专题

10.3969/j.issn.1007-2683.2008.04.015

基于RBF混合神经网络的自由曲面重构

引用
为解决大样本集的简化建模和快速训练问题,以层次划分为思想基础,提出了基于径向基函数神经网络的混合网络(RBFMNN)模型,对自由曲面进行重构.用减聚类方法划分样本空间,对各子样本空间用正交最小二乘法进行RBF子网络训练.最后,利用最大似然法来校正RBF子网输出层的参数,以进一步提高混合网络输出精确度.试验结果表明,该网络模型对已知理想的曲面拟合误差为106星级.

神经网络、混合网络模型、自由曲面、重构

13

TP393.01(计算技术、计算机技术)

2008-11-06(万方平台首次上网日期,不代表论文的发表时间)

共4页

50-53

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

13

2008,13(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn