期刊专题

10.16382/j.cnki.1000-5560.2018.01.017

非连续性与异质性——多阶段混合增长模型在语言发展研究中的应用

引用
多阶段混合增长模型(Piecewise Growth Mixture Modeling,PGMM)是近几年新兴的同时关注群体的发展阶段非连续性和潜在异质性的统计模型.它将多阶段增长模型和潜类别增长模型进行整合,可以描述同时存在发展转折点和不同发展类别的描述群体增长趋势的数据.文章以早期儿童的追踪研究(幼儿园版)为例,运用PGMM模型探索其增长趋势,得出:(1)两阶段混合增长模型能最有效地描述学生阅读能力的发展,转折点在一年级,随着年龄的增加,发展速度变慢;(2)发展趋势分为三类,大部分个体起点低、发展快,小部分个体起点高、发展慢,到三年级以后两个类别差距越来越小,另一部分整体发展都比较缓慢;(3)教师对学生行为的评价比父母的评价更能有效预测学生阅读成绩的类别和趋势.

多阶段混合增长模型(PGMM)、非连续性、潜在异质性、模型拟合

36

中央高校基本科研业务费专项资金资助SWU1709379

2018-04-09(万方平台首次上网日期,不代表论文的发表时间)

共12页

137-148

相关文献
评论
暂无封面信息
查看本期封面目录

华东师范大学学报(教育科学版)

1000-5560

31-1007/G4

36

2018,36(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn