期刊专题

企业财务危机预警模型比较实证研究

引用
针对财务危机预警模型,梳理了国内外相关文献,根据其公司财务信息的时间序列特征,比较了Z分数模型、Logistic回归模型以及卷积神经网络模型在财务风险预警中的性能,并且根据实验比较,分析证明了卷积神经网络在财务方面的应用相较于传统方法的优越性,最终通过建立现实场景下的数据集进行验证观测性能以及收敛曲线后,给出相关财务危机预警建议.基于此,利用深度学习智能模型,不仅能快速且高效地处理大规模财务数据,还可以保证在测试阶段(即实际应用场景下)不会随着时间推移而改变企业风险预测的结果,可以有效保证预测的稳定性.因此,利用深度学习处理财务风险数据并预警具有实际应用价值.以近 3 年A股上市公司数据为样本,并通过实证研究证明深度学习智能模型与传统模型之间的性能差异并得出结论.

财务危机预警、Z模型、回归模型、卷积神经网络

F230(会计)

2023-10-23(万方平台首次上网日期,不代表论文的发表时间)

共3页

108-110

暂无封面信息
查看本期封面目录

河北企业

1008-1968

13-1230/F

2023,(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn