期刊专题

10.7535/hbkd.2021yx06006

融合深度特征和FHOG特征的尺度自适应相关滤波跟踪算法

引用
为了解决核相关滤波跟踪算法在复杂场景下跟踪效果差的问题,提出了一种融合深度特征和尺度自适应的相关滤波目标跟踪算法.首先,通过深度残差网络(ResNet)提取图像中被跟踪区域的深度特征,再提取目标区域方向梯度直方图(FHOG)特征,通过核相关滤波器学习,分别得到多个响应图,并对响应图进行加权融合,得到跟踪目标位置.其次,通过方向梯度直方图(FHOG)特征,训练一个PCA降维的尺度滤波器,实现对目标尺度的估计,使算法对目标尺度发生变化有很好的自适应能力.最后,根据响应图的峰值波动情况改进模型更新策略,引入重新检测机制,降低模型发生漂移概率,提高算法抗遮挡能力,在标准数据集OTB100中与其他7种目标跟踪算法进行比较.结果表明,相比原始KCF算法,改进后的KCF算法精准度提升了29.4%,成功率提升了25.9%.所提算法实现了对跟踪目标位置的精准估计,提高了尺度自适应能力和算法速度,增强了算法抗遮挡能力.

计算机图像处理;目标跟踪;核相关滤波;深度特征;多尺度;抗遮挡

42

TP391(计算技术、计算机技术)

黑龙江省自然科学基金C201414

2021-12-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

591-600

暂无封面信息
查看本期封面目录

河北科技大学学报

1008-1542

13-1225/TS

42

2021,42(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn