基于集成核熵成分分析算法的工业过程故障检测
针对核熵成分分析算法(kernel entropy component analysis,KECA)为不同的故障选择相同的核参数影响检测效果的问题,提出了一种基于集成核熵成分分析(ensemble kernel entropy component analysis,EKECA)算法的工业过程故障检测方法.首先,选取一系列具有不同宽度参数的核函数将非线性数据投影到核特征空间,选取Rényi熵值贡献较大的特征值和特征向量,得到转换后的得分矩阵,建立多个KECA子模型;然后,将测试数据投影到各KECA子模型上,计算各KECA子模型的统计量,得到检测结果;最后,将各KECA子模型的检测结果利用Bayesian决策进行概率换算,利用集成学习法计算检测结果统一的统计量,判断其是否超出控制限,并将该算法应用于数值例子和TE过程.仿真结果表明,与传统的EKPCA,KECA等算法相比,所提方法有效提高了故障检测率,降低了误报率.新方法解决了传统KECA算法中不同故障核参数的选择问题,为提高KECA算法在非线性工业过程故障检测中的性能提供了参考.
自动控制技术其他学科;核熵成分分析;高斯核函数;Bayesian决策;集成学习法
42
TP277(自动化技术及设备)
国家自然科学基金;辽宁省教育厅一般项目
2021-11-22(万方平台首次上网日期,不代表论文的发表时间)
共10页
481-490