一种改进YOLOv3的手势识别算法
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法.首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数.结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍.采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力.
计算机神经网络、YOLOv3、目标检测、手势识别、DIoU、Focal损失函数
42
TP391.9(计算技术、计算机技术)
国防科技重点实验室项目6142205190401
2021-01-20(万方平台首次上网日期,不代表论文的发表时间)
共8页
22-29