期刊专题

10.3969/j.issn.1673-9469.2010.04.008

基于RS-SVM的建筑施工项目安全预警模型

引用
针对目前建筑施工项目安全风险管理的现状,应用粗集理论对建筑施工项目的安全因素进行预处理,将处理后的信息结构作为支持向量机的输入数据进行训练和预测,构建建筑施工项目安全风险预警模型,并在小样本条件下,与BP神经网络进行对比分析.结果表明,RS-SVM预测模型的最小均方根误差为0.011 5,BP神经网络的均方根误差为0.070 7,RS-SVM预警模型的预测精度、泛化能力明显优越于BP神经网络学习方法.

建筑施工、粗集、支持向量机、安全预警

27

X947

2011-04-07(万方平台首次上网日期,不代表论文的发表时间)

共6页

30-35

暂无封面信息
查看本期封面目录

河北工程大学学报(自然科学版)

1673-9469

13-1375/N

27

2010,27(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn