期刊专题

10.14081/j.cnki.hgdxb.2021.01.006

3D CNN人体动作识别中的特征组合优选

引用
为了提高人体动作识别准确率,改进原有3D CNN网络模型以获得更为丰富细致的人体动作特征,并通过对比实验为模型输入优选出识别效果最好的特征组合.该模型主要包括5个卷积层、3个下采样层和2个全连接层,二次卷积操作有利于提取到更为细致的特征,BN算法和dropout层用以防止模型过拟合,空间金字塔池化技术可以使网络能够处理任何分辨率的图像,提高模型适用性.通过在KTH和UCF101数据集上做识别测试实验,特征组合"ViBe二值图+光流图+三帧差分图"作为模型输入可以得到较高的识别准确率,尤其针对背景较复杂、动作类别多且差异性较小的数据集提高明显,具有较好的实际应用价值.

深度学习、人体动作识别、三维卷积神经网络、BN算法、dropout技术、空间金字塔池化

50

TP391.41(计算技术、计算机技术)

天津市科技特派员项目16JCTPJC50200

2021-03-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

44-50

暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

50

2021,50(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn