期刊专题

10.14081/j.cnki.hgdxb.2018.06.011

基于特征融合的卷积神经网络乳腺癌图像分类

引用
传统乳腺癌图像分类方法需要从医学图像中人工提取特征,不仅需要具备专业医学知识,而且存在耗时费力、提取高质量特征困难等问题.因此,提出了一种基于特征融合的卷积神经网络乳腺癌图像分类方法.首先预训练了两个不同结构的卷积神经网络,然后利用卷积神经网络自动提取特征的特性,将两个结构提取到的特征进行融合,最后利用分类器对融合的特征进行分类;同时,为避免卷积神经网络模型受小样本量限制出现过拟合现象,通过乳腺病变区域提取、区域细化和数据增强等方法对图像进行适当预处理,并通过过采样方法解决了正负样本不平衡的问题.实验结果显示,该方法在乳腺癌图像数据集BCDR-F03上分类AUC达到89%,对乳腺癌图像的分类精度较传统方法有明显提高.

卷积神经网络、特征融合、支持向量机、数据增强、过采样、乳腺癌病理图像

47

TP183;TP391.4(自动化基础理论)

河北省科技计划项目15210345;天津市科技计划项目14ZCDGSF00124

2019-03-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

70-74

暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

47

2018,47(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn