期刊专题

10.14081/j.cnki.hgdxb.2015.05.007

基于卷积神经网络和PCA的人脸识别

引用
主要研究了在基于深度学习的人脸识别算法中,对于由深度卷积神经网络提取得到的人脸特征进行降维处理是否有助于提高人脸识别的准确率.利用VGG网络模型提取人脸图像的深度特征,然后利用主成分分析(PCA)对提取到的深度特征进行降维,最后利用余弦分类器进行分类识别,并在LFW人脸库上进行实验.实验结果表明通过PCA降维后的深度特征具有较高识别率.

模式识别、人脸识别、深度学习、卷积神经网络、主成分分析

45

TP387(计算技术、计算机技术)

2017-02-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

44-49

暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

45

2016,45(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn