期刊专题

10.14081/j.cnki.hgdxb.2016.05.006

一种基于MapReduce的改进k-means聚类算法研究

引用
传统k-means算法的聚类中心需要经过多次迭代运算才能最终稳定,而MapReduce计算框架下的k-means聚类算法在处理迭代运算时效率并不理想.针对上述问题,提出一种新的基于MapReduce的k-means聚类算法.该算法对传统k-means算法进行了改进,通过将k-means聚类问题转化为Map和Reduce两阶段的k-means++算法聚类问题,并将权值概念和单通道技术引入到传统k-means++算法中,提升了算法在MapReduce框架中的执行效率.实验分析表明,该方法较之传统方法具有更好的加速比和可扩展性.

k-means、MapReduce、两阶段、单通道、并行化、加速比

45

TP18(自动化基础理论)

山西省自然科学基金2015011040

2017-02-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

35-43

暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

45

2016,45(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn