期刊专题

10.14081/j.cnki.hgdxb.2016.02.001

一种改进的K-SVD字典学习算法

引用
提出了一种ALM-KSVD字典学习算法,通过稀疏编码和字典更新两步迭代学习得到训练样本的字典.为了提高字典训练速度与性能,在稀疏编码引入增广拉格朗日乘子法(ALM,Augmented Lagrange Multipliers)求解,更新字典则使用经典K-SVD的字典更新算法.为考察算法的字典训练速度和平均表示误差(RMSE),选取了不同样本数和噪声标准进行数据合成实验,结果表明本文算法比经典的K-SVD算法字典训练速度快、RMSE低.进一步考察算法的图像去噪能力,选取不同的输入图像噪声标准和字典原子数进行仿真,实验结果表明本文算法比经典的K-SVD算法获得更高的峰值信噪比(PSNR),具有良好的去噪性能.

字典学习、K-SVD、稀疏编码、增广拉格朗日乘子法、ALM

45

TP391.9(计算技术、计算机技术)

国家自然科学基金61203245;河北省自然科学基金F2012202027;河北省高等学校科学技术研究项目Z2011142

2016-09-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

1-8

相关文献
评论
暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

45

2016,45(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn