期刊专题

10.3969/j.issn.1007-2373.2012.01.002

基于蚁群和支持向量机的microRNA预测方法

引用
由于microRNA在生物体系统中起着重要的调控功能,对microRNA进行快速有效的预测很有必要.本文通过使用蚁群算法和支持向量机相结合的思想,结合microRNA的前体pre-miRNA序列特征和结构特征,构造了一种microRNA的预测方法.通过采集Sanger和UCSE数据库中的人类阳性和部分阴性数据集进行学习和测试,同时使用J48和BP神经网络两种机器学习方法进行对比,实验结果显示,使用蚁群算法和支持向量机的方法预测pre-miRNA的识别率达97.471%,与另外两种方法相对比,识别率分别提高了8.736%和10.575%,预测的准确性有显著提高.

蚁群算法、支持向量机、microRNA、基因预测、机器学习

41

TP39(计算技术、计算机技术)

2012-05-22(万方平台首次上网日期,不代表论文的发表时间)

共4页

5-8

相关文献
评论
暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

41

2012,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn