期刊专题

10.3969/j.issn.1007-2373.2007.04.014

基于改进的PSO神经网络的手写体汉字识别

引用
为了克服手写体汉字识别中传统神经网络训练算法存在网络易于过早收敛的缺陷,本文提出采用自适应惯性权值的粒子群优化算法训练神经网络,即利用粒子更新迭代训练神经网络最优的权值和阈值,其中对粒子更新的惯性权值进行了自适应性的改进.试验中提取了大量汉字样本的笔画数量信息和分布信息作为特征向量,利用改进的粒子群神经网络对汉字进行分类,并与BP神经网络的识别效果做了比较.结果表明:自适应惯性权值的粒子群优化算法能有效避免网络"早熟",大大提高了网络训练精度,网络对汉字的识别正确率明显提高.

粒子群算法、惯性权值、神经网络、手写体汉字识别、图像特征提取

36

TP18(自动化基础理论)

2007-12-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

65-69

暂无封面信息
查看本期封面目录

河北工业大学学报

1007-2373

13-1208/T

36

2007,36(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn