期刊专题

10.15886/j.cnki.hdxbzkb.2021.0042

地理信息服务领域的实体自动化识别

引用
针对地理信息服务领域(Geographic Information Services,GIServices)在实体自动识别方面存在缺乏语料、多种实体嵌套、语义稀疏等问题,本文设计了一套地理信息服务文献实体标注规范,构建了地理信息服务领域的语料;在传统实体识别模型BiLSTM-CRF的基础上,引入了BERT(Bidirectional Encoder Representaions from Transformers)预训练模型及卷积层(Convolutional layer),构建了 BERT-1DCNN-BiLSTM-CRF模型,提升了地理信息服务文献实体识别的准确率.该模型在词嵌入层以BERT预训练模型取代了传统的静态语言模型,从而有效地解决了地理信息服务领域因缺乏大量训练语料而无法表达更丰富句子语义信息的问题;此外,在BERT模型之后还加入了字间卷积特征,提升了句子局部特征的表示能力,降低了句子语义稀疏的干扰.实验结果表明,融合了 BERT模型与CNN模型的GIServices文献实体识别方法效果优于传统深度学习的方法,模型准确率达到了 0.826 8,能够较好地实现GIServices文献自动化实体识别,同时也能较好地体现基于BERT的深度学习模型在实体自动化识别方面的有效性.

地理信息服务;BERT模型;命名实体识别;字间特征卷积;BiLSTM-CRF模型

39

TP391.1(计算技术、计算机技术)

中国科学院战略性先导科技专项;中央引导地方科技发展专项

2022-02-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

331-339

暂无封面信息
查看本期封面目录

海南大学学报(自然科学版)

1004-1729

46-1013/N

39

2021,39(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn