10.15886/j.cnki.hdxbzkb.2021.0042
地理信息服务领域的实体自动化识别
针对地理信息服务领域(Geographic Information Services,GIServices)在实体自动识别方面存在缺乏语料、多种实体嵌套、语义稀疏等问题,本文设计了一套地理信息服务文献实体标注规范,构建了地理信息服务领域的语料;在传统实体识别模型BiLSTM-CRF的基础上,引入了BERT(Bidirectional Encoder Representaions from Transformers)预训练模型及卷积层(Convolutional layer),构建了 BERT-1DCNN-BiLSTM-CRF模型,提升了地理信息服务文献实体识别的准确率.该模型在词嵌入层以BERT预训练模型取代了传统的静态语言模型,从而有效地解决了地理信息服务领域因缺乏大量训练语料而无法表达更丰富句子语义信息的问题;此外,在BERT模型之后还加入了字间卷积特征,提升了句子局部特征的表示能力,降低了句子语义稀疏的干扰.实验结果表明,融合了 BERT模型与CNN模型的GIServices文献实体识别方法效果优于传统深度学习的方法,模型准确率达到了 0.826 8,能够较好地实现GIServices文献自动化实体识别,同时也能较好地体现基于BERT的深度学习模型在实体自动化识别方面的有效性.
地理信息服务;BERT模型;命名实体识别;字间特征卷积;BiLSTM-CRF模型
39
TP391.1(计算技术、计算机技术)
中国科学院战略性先导科技专项;中央引导地方科技发展专项
2022-02-23(万方平台首次上网日期,不代表论文的发表时间)
共9页
331-339