期刊专题

10.3969/j.issn.1009-8526.2020.01.006

基于遗传优化的水面无人船艇神经网络智能控制

引用
利用GA智能优化算法和RBF神经网络逼近算法设计了一种USV运动滑模理想跟踪控制方法.首先利用改进的遗传算法对RBF网络参数进行在线寻优以进而提高其逼近性能.其次,将学习速度较快的局部RBF神经网络对滑模控制设计中存在的船舶运动系统函数不确定项进行逼近,使得由于滑模面的不间断切换引起的控制输入抖振问题得到有效地解决.对比实验说明了在同等条件下,上述智能控制系统稳定时间更快,超调量更小,以及输入舵角更平滑.

遗传优化、RBF神经网络、滑模控制、水面无人船艇

28

U666.153(船舶工程)

2020-04-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

31-34

相关文献
评论
暂无封面信息
查看本期封面目录

广州航海学院学报

1009-8526

44-1713/U

28

2020,28(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn