期刊专题

10.3969/j.issn.1000-0682.2021.06.019

基于CNN-GRU网络的轴承故障检测算法

引用
传统的卷积神经网络(Convolutional Neural Networks,CNN)采用的激活函数sigmoid,tanh计算量大,容易出现梯度消失和过拟合现象,ReLU函数容易导致均值偏移,且在轴承故障诊断中,故障数据一般为时序信号.为了解决CNN网络中激活函数存在的问题,同时提高对故障数据的时序特征提取能力,将CNN与门控循环单元(Gated Recurrent Unit,GRU)相结合,提出了一种基于eLU激活函数的CNN-GRU网络模型,用于轴承故障诊断.用凯斯西储大学轴承故障数据集对该网络进行验证,预测准确率达到99.93%,相较于其他算法更具优越性.

轴承;故障诊断;CNN;GRU;eLU

TH117

2021-12-22(万方平台首次上网日期,不代表论文的发表时间)

共4页

88-91

暂无封面信息
查看本期封面目录

工业仪表与自动化装置

1000-0682

61-1121/TH

2021,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn