期刊专题

10.3969/j.issn.1000-0682.2017.03.002

基于MEA-Elman神经网络的电力日负荷预测

引用
Elman神经网络是一种动态反馈网络,对历史状态敏感,具有短期记忆功能和处理动态信息的能力,可以建立动态、非线性电力负荷预测模型.由于Elman神经网络采用BP算法,容易陷入局部极小解,迭代次数多且学习效率低,该文利用思维进化算法(MEA)优化Elman神经网络的方法,提出基于MEA-Elman神经网络的电力负荷预测模型.实验表明,该方法能够避免不成熟收敛问题,减少迭代次数,有效提高了配电网短期负荷的预测精度,对电力系统合理调度与规划具有重要意义.

日负荷预测、思维进化算法、优化、MEA-Elman神经网络

TM715(输配电工程、电力网及电力系统)

2017-07-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

7-10

暂无封面信息
查看本期封面目录

工业仪表与自动化装置

1000-0682

61-1121/TH

2017,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn