期刊专题

10.3969/j.issn.1002-1639.2018.05.013

城市燃气小时负荷预测模型研究

引用
城市燃气小时负荷预测的研究对燃气调度系统的安全与稳定具有重要意义.为了提高城市燃气小时负荷预测精度,在分析讨论主成分分析特性和BP神经网络优缺点的基础上,建立了利用主成分分析法对BP神经网络进行优化的小时负荷预测模型.该模型综合了主成分分析的降维特性和BP神经网络具有强大的自学习和自适应能力等特点,首先通过主成分分析法对所有相关影响因子进行降维处理,再将处理后累计贡献率占比85%以上的几种主成分作为输入层神经元输入BP神经网络进行训练,最后运用该组合模型对某县的小时负荷进行预测.实例分析表明:与单一模型相比,提出的PCA-BPNN组合预测模型精度更高,是一种更为有效的城市燃气小时负荷预测方法.

主成分分析、BP神经网络模型、小时负荷、负荷预测

47

TU996.3(地下建筑)

2018-12-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

49-53

相关文献
评论
暂无封面信息
查看本期封面目录

工业加热

1002-1639

61-1208/TM

47

2018,47(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn