期刊专题

10.19495/j.cnki.1007-5429.2024.02.002

基于序贯稀疏自编码器和高斯混合模型的驾驶行为分析

引用
基于驾驶数据,驾驶行为分析方法能够获得隐藏的驾驶行为信息,进而实现驾驶风格识别等应用.随着传感器技术的发展,先进驾驶辅助系统需分析的驾驶数据的规模和维度不断增加,这提升了驾驶行为分析结果的有效性和普适性,但也给数据分析工作带来了挑战.因此,准确高效的驾驶行为分析方法对于先进驾驶辅助系统的作用越发重要.针对大规模、高维驾驶数据集,本文提出了一种基于序贯稀疏自编码器和高斯混合模型的驾驶行为分析方法.首先,为了有效提取驾驶数据的低维特征,该方法改进了稀疏自编码器在预训练阶段的损失函数,降低了模型参数易落到局部最优的风险;然后,该方法基于线性映射将提取到的驾驶特征映射到颜色空间,实现了驾驶行为的可视化;最后,该方法使用高斯混合模型对提取到的驾驶特征进行聚类,实现了驾驶风格的识别.真实驾驶数据的验证结果表明,所提算法可以提取到比传统算法更有区分度的驾驶特征,并在轮廓系数等性能指标下都取得了更好的驾驶风格识别效果.

自编码器、高斯混合模型、驾驶行为分析、驾驶风格识别、驾驶行为可视化

29

TP181(自动化基础理论)

国家自然科学基金72101147

2024-06-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

10-18

暂无封面信息
查看本期封面目录

工业工程与管理

1007-5429

31-1738/T

29

2024,29(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn