期刊专题

10.3788/AOS201838.0430005

基于广义S变换和奇异值分解的近红外光谱去噪

引用
针对近红外光谱物质含量检测过程中噪声影响模型精度和稳定性的问题,引入广义S变换与奇异值分解(SVD).利用广义S变换得到光谱数据的时频谱,并将二维时频谱系数矩阵作为SVD的Hankel矩阵求解奇异值,再采用k-均值聚类算法对奇异值序列进行分类计算,确定重构奇异值个数,对去噪后的数据矩阵进行广义S逆变换得到去噪后的光谱数据.给出组合方法的基本理论和具体实现过程,对仿真数据和谷朊粉导数光谱进行去噪,并与传统的9点平滑法和小波软阈值法的去噪结果进行比较.结果表明:所提方法克服了时域或频域单维滤波的局限性,且无需参考噪声数据和选择基函数,在谷朊粉导数光谱去噪中,只需采用两个奇异值就能实现较好的去噪效果,降低了滤波过程的复杂度.采用所提方法处理后,近红外光谱的分析精度和模型的稳健性优于9点平滑处理法和小波软阈值法.相比9点平滑法,所提方法的预测集的决定系数由0.9436增大为0.9985,预测均方根误差由0.0843减小为0.0406,明显提高了谷朊粉中水分含量定量检测的精度.

光谱学、去噪、广义S变换、奇异值分解、时频谱

38

O657.1(分析化学)

国家自然科学基金;湖南省自然科学基金;湖南省自然科学基金;湖南省教育厅重点项目

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共10页

382-391

暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

38

2018,38(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn