期刊专题

10.3788/AOS201838.0411004

基于总变分最小化模型的异步并行GPU加速算法

引用
相比于传统同步并行计算策略,在异步并行计算框架下,针对最常用的总变分(TV)最小化重建模型,通过将其转化为不动点迭代问题,并利用异步交替方向法(ADM)进行求解,推导出基于TV最小化模型的异步ADM迭代重建算法,即异步交替方向总变分最小化算法(Async-ADTVM).利用消息传递接口技术将该算法在图形处理器(GPU)集群上进行测试,进一步提高了原始基于TV最小化模型的迭代重建算法的计算效率.实验表明,该算法在计算求解精度上略优于ADTVM算法,同时在GPU性能存在差异的条件下相比传统多GPU加速策略可获得更高的加速比.

成像系统、优化类重建算法、异步并行迭代、总变分最小化模型、多图形处理器加速

38

TP391;O434.1(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

153-160

暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

38

2018,38(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn