期刊专题

10.3788/AOS201838.0410003

基于卷积神经网络的低剂量CT图像去噪方法

引用
为了改善低剂量计算机断层扫描(CT)图像的视觉质量,提出一种基于卷积神经网络的图像去噪方法.网络引入批量归一化,并且学习的是低剂量CT图像到其噪声图像之间的映射;使用空洞卷积在不提高复杂度的情况下增大感受野;此外,还将前后层的特征图进行连接,使后方的卷积层能够利用前方各层的特征图作为输入,鼓励网络中特征图的重用.实验结果表明,与目前较先进的方法相比,所提网络结构在实现了更好去噪效果的同时大幅度降低了网络复杂度,能够快速、显著地改善低剂量CT图像的视觉质量.

图像处理、图像去噪、低剂量计算机断层扫描、深度学习、卷积神经网络

38

TP391(计算技术、计算机技术)

2018-08-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

115-121

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

38

2018,38(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn