期刊专题

10.37188/OPE.20233114.2135

联合全局与局部特征的深度压缩感知图像重构

引用
从极少量的测量值中有效且高概率高质量恢复出原始信号是压缩感知图像重建研究的核心问题,学者们相继提出了传统和基于深度学习的压缩感知图像重建算法,传统算法通常基于优化模型迭代求解,重建质量和重建速度都无法保证;基于深度学习的算法重建质量相对较高,但缺乏物理可解释性.受滤波流的启发,本文提出了联合全局与局部的深度压缩感知图像重建模型(G2LNet),其以卷积层执行压缩采样以及初始重建过程,利用快速傅里叶卷积与滤波流,同时考虑了图像全局上下文信息和图像像素局部邻域信息,联合学习优化测量矩阵与滤波流,建立了完整的端到端可训练的深度图像压缩感知重建网络.经实验验证,在压缩感知图像重建领域常用的Set5,Set11,BSD68测试集上取得了良好的重建效果,在采样率为20%的情况下,G2LNet的图像重建质量相比于经典的传统算法MH与基于深度学习的算法CS-Net的平均PSNR分别提高了2.29 dB,0.51 dB,有效提升了重建图像质量.

压缩感知、图像重建、快速傅里叶卷积、滤波流、深度神经网络

31

TP394.1;TH691.9(计算技术、计算机技术)

国家自然科学基金;重庆市技术创新与应用发展面上项目

2023-08-08(万方平台首次上网日期,不代表论文的发表时间)

共12页

2135-2146

暂无封面信息
查看本期封面目录

光学精密工程

1004-924X

22-1198/TH

31

2023,31(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn