期刊专题

10.37188/OPE.20212906.1482

基于残差自注意力机制的航空发动机RUL预测

引用
针对传统神经网络在多维数据高分辨率特征识别和高精度信号提取方面的缺陷,开展基于残差自注意力机制的剩余使用寿命(RUL)预测算法研究.比较分析卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的结构特性,揭示二者在长序列信息特征关联能力和局部特征提取能力上的局限性.研究自注意力机制,引入双层残差网络抑制误差函数反向传播中扩散性,进而构建了一种卷积记忆残差自注意力机制的深度学习方法.基于上述方法对典型航空涡扇发动机退化实验数据集进行仿真分析,结果表明:所述方法能够有效建立监测数据与发动机健康状态之间的关系,关键评价指标——剩余使用寿命预测的均方误差为225,相比传统自注意力机制均方误差降低了17.9%,验证了所述方法的可行性和有效性.

残差自注意力机制、神经网络、剩余使用寿命、航空发动机

29

TP277(自动化技术及设备)

基础加强计划技术领域基金项目;国家自然科学基金

2021-07-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

1482-1490

相关文献
评论
暂无封面信息
查看本期封面目录

光学精密工程

1004-924X

22-1198/TH

29

2021,29(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn