基于图像特征和光流场的非刚性图像配准
考虑传统非刚性图像配准方法无法同时满足配准精度和配准时间要求,综合图像的特征和灰度信息,提出了几种改进的非刚性图像配准方法:基于圆形描述子特征的非刚性配准方法(Circle Descriptor Feature,CDF),基于动态驱动力Demons的非刚性配准方法(Dynamic Driving Force Demons,DDFD),和基于图像特征和光流场的非刚性配准方法.CDF方法通过提取图像的特征点,采用圆形描述子代替传统方法的正方形描述子来保证图像的旋转不变性,提高配准速度;DDFD方法通过引入驱动力系数动态改变驱动力,有效地解决了传统方法配准时间和配准精度低的问题;基于图像特征和光流场的非刚性配准方法则首先提取浮动图像和参考图像的特征点,然后利用提取的特征点进行粗配准(特征级配准),再采用基于光流场的方法进行精细配准(像素级配准),最终实现配准精度和配准时间的兼顾.对checkboard测试图像、自然图像、脑部MR图像、肝部CT图像进行了实验测试,结果表明,本文方法在配准时间、配准精度及对大形变图像的适应性方面均优于传统尺度不变特征转换(SIFT)、加速鲁棒特征(SURF)、Demons、Active Demons和全变差正则项-L1范数项(T V-L1)等方法.
图像配准、非刚性配准、特征提取、光流场模型、圆形描述子
25
TP391.4(计算技术、计算机技术)
国家自然科学基金资助项目81671848,81371635;山东省重点研发计划资助项目2016GGX101017
2017-11-27(万方平台首次上网日期,不代表论文的发表时间)
共14页
2469-2482