基于脉冲耦合神经网络模型的小波自适应斑点噪声滤除算法
分析了维纳滤波原理和脉冲耦合神经网络(PCNN)模型的特点,根据斑点噪声统计模型的特征,结合小波变换方法,提出了一种基于PCNN模型的小波自适应斑点噪声滤除算法(W-PCNN-WD)来改善超声图像质量.首先,对超声图像进行对数变换,使斑点噪声转换为加性噪声;对医学图像进行维纳滤波处理,计算其加性噪声的标准方差,并以此作为小波阈值.然后,利用小波变换对图像进行预处理,利用PCNN在小波域中对小波系数进行相应的修正.最后,进行小波逆变换和指数变换,获得滤除噪声的图像.结果表明:本文提出的滤波方法优于其他滤波方法,当噪声方差为0.01时,本文滤波算法获得的峰值信噪比(PSNR)比经Wiener滤波方法获得的高出9 dB.该滤波方法能在有效去除超声斑点噪声的基础上保留图像的边缘细节信息,极大地改善了图像的视觉质量.
斑点噪声、维纳滤波、脉冲耦合神经网络、小波变换
20
TP391.4;Q-334(计算技术、计算机技术)
陕西省教育厅自然科学专项12JK0512;西安工程大学博士科研启动基金
2012-11-19(万方平台首次上网日期,不代表论文的发表时间)
共8页
2060-2067