期刊专题

10.3788/OPE.20111906.1398

改进型脉冲耦合神经网络检测乳腺肿瘤超声图像感兴趣区域

引用
为了解决超声图像斑点噪声、伪影、低图像对比度和图像亮度不均匀等问题,提出了一种改进的简化脉冲耦合神经网络(SPCNN)结合模糊互信息量的方法来自动检测乳腺肿瘤超声图像的感兴趣区域(ROI).首先,对超声图像进行模糊增强预处理;然后,通过改进SPCNN对超声图像进行点火,以最大模糊互信息量作为最优判决准则,获得相应的分类结果;最后,对分类后的二值图像进行形态学等处理,从而得到乳腺超声图像的ROI.对包含118幅乳腺肿瘤超声图像的数据库进行处理,结果表明,该方法自动识别ROI准确率达到87.3%,处理每一幅图像的平均时间为4.68 s.本算法能有效快速地检测乳腺肿瘤超声图像的ROI,有望用于基于超声图像的乳腺肿瘤CAD中.

乳腺肿瘤、超声图像、感兴趣区域、脉冲耦合神经网络、模糊互信息

19

R445.1;TP183(诊断学)

国家自然科学基金资助项目No.10974035;上海市优秀学科带头人计划资助项目10XD1400600

2011-12-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

1398-1405

暂无封面信息
查看本期封面目录

光学精密工程

1004-924X

22-1198/TH

19

2011,19(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn