10.3760/cma.j.cn121382-20200520-00206
基于卷积神经网络的心电图心律失常分类方法
目的:提升心电图心律失常分类算法的性能,为临床心电诊断提供辅助依据。方法:将一维心电图数据按照R点进行切分,将切分后的数据生成2D图像。利用数据增强技术将样本进行扩增,再利用二维卷积神经网络(2D-CNN)中的2D卷积层、2D最大池化层、Flatten层和全连接层,对图像特征进行提取,并通过Softmax分类器进行分类。利用带有权重系数的损失函数来增强模型对于S类和V类的学习。采用MIT-BIH数据集进行模型训练并评估算法性能。结果:样本扩增和使用带有权重系数的损失函数能够提升模型的召回率和特异性指标,同时保持模型对室性异位搏动(VEB)和室上性异位搏动(SVEB)分类的精确率的指标。结论:所提出模型的准确率为99.02%,SVEB的召回率为96.4%,表明该分类方法可以辅助医护人员诊断心脏疾病。
心律失常、数据增强、卷积神经网络、分类性能
44
2023-05-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
119-123,138