期刊专题

10.3760/cma.j.cn121382-20200520-00206

基于卷积神经网络的心电图心律失常分类方法

引用
目的:提升心电图心律失常分类算法的性能,为临床心电诊断提供辅助依据。方法:将一维心电图数据按照R点进行切分,将切分后的数据生成2D图像。利用数据增强技术将样本进行扩增,再利用二维卷积神经网络(2D-CNN)中的2D卷积层、2D最大池化层、Flatten层和全连接层,对图像特征进行提取,并通过Softmax分类器进行分类。利用带有权重系数的损失函数来增强模型对于S类和V类的学习。采用MIT-BIH数据集进行模型训练并评估算法性能。结果:样本扩增和使用带有权重系数的损失函数能够提升模型的召回率和特异性指标,同时保持模型对室性异位搏动(VEB)和室上性异位搏动(SVEB)分类的精确率的指标。结论:所提出模型的准确率为99.02%,SVEB的召回率为96.4%,表明该分类方法可以辅助医护人员诊断心脏疾病。

心律失常、数据增强、卷积神经网络、分类性能

44

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

119-123,138

暂无封面信息
查看本期封面目录

国际生物医学工程杂志

1673-4181

12-1382/R

44

2021,44(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn