期刊专题

应用优化BP神经网络建立铁水硅含量的预测模型

引用
高炉铁水的硅含量是描述铁水质量的一个重要指标.为了在出铁之前了解铁水中硅含量的高低,建立预测模型是必要的.结合遗传算法(GA)和BP神经网络,建立了优化的GA-BP预测分析模型,从某高炉选取生产数据进行学习和预测.运行结果表明,模型具有较高的预测精度,当要求绝对误差为±0.05时,命中率可达70%;绝对误差为±0.08时,命中率可达92.3%.同时,应用该模型分析回归了高炉风量、热风压力、富氧量与铁间料批数等参数与铁水硅含量之间的相关关系,其结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导.

遗传算法、BP神经网络、硅含量、预测

19

TF533(炼铁)

国家自然科学基金59974006

2008-01-07(万方平台首次上网日期,不代表论文的发表时间)

共4页

60-封3

相关文献
评论
暂无封面信息
查看本期封面目录

钢铁研究学报

1001-0963

11-2133/TF

19

2007,19(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn