期刊专题

10.3969/j.issn.1000-0952.2018.04.023

基于改进RPCL的K-means聚类算法

引用
针对现有(Rival Penalized Competitive Learning,RPCL)算法之不足,提出根据样本数据集自然分布规定样本密度,把此密度代入次胜者受罚竞争学习算法(RPCL)节点权值调整的改进RPCL算法;以改进RPCL算法对数据集进行预处理,确定K-means算法的合理类簇数目和最佳初始聚类中心,提高K-means算法的聚类效率和聚类准确性,促进其尽快地收敛至全局最优解.

K-means算法、密度、RPCL算法、聚类数目、初始中心

34

TP18(自动化基础理论)

2018-04-26(万方平台首次上网日期,不代表论文的发表时间)

共4页

59-62

相关文献
评论
暂无封面信息
查看本期封面目录

甘肃科技

1000-0952

62-1130/N

34

2018,34(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn