期刊专题

10.3964/j.issn.1000-0593(2019)04-1143-05

铀污染下的商陆叶片反射光谱特征与铀含量关系研究

引用
通过室内盆栽试验,利用微分技术处理叶片反射光谱数据,研究铀污染下商陆叶片中的铀含量在不同光谱波段与原始光谱反射率、一阶导数光谱的相关关系,找到商陆铀污染诊断的敏感波段范围和最优光谱特征参数,并以相关性较好的敏感波段及光谱特征参数为自变量,与商陆叶片铀含量建立对应的估测拟合模型.如果以该模型为基础创建铀含量的冠层光谱模型,则有可能实现通过遥感影像监测叶片中的铀含量.实验结果表明:当商陆叶片中的铀含量为5.94~71.74 mg·kg-1时,叶片中铀含量与一阶导数光谱数据的相关性较原始光谱数据好,在749~766 nm区间内存在较好的相关性和光谱响应;根据上述相关性分析,选择14个光谱特征参数,计算他们与商陆叶片铀含量的相关系数,其中蓝边面积、红边位置、红边面积与蓝边面积的比值及红边面积与蓝边面积的归一化值与叶片铀含量的相关系数达到了0.05显著检验水平;选取一阶导数光谱中相关系数最高的波段757,758,760和761 nm处的值和上述相关性最高的4个光谱特征参数,与叶片铀含量建立多种形式的估测拟合模型,通过对拟合模型的精度检验,发现以红边面积与蓝边面积的比值、757和760 nm处反射率的一阶导数为自变量的拟合模型的预测效果较好,其中拟合效果最优的模型是以757 nm波段处反射率的一阶导数为自变量的三次函数模型,模型预测精度达到了89.8%.

铀含量、商陆、敏感波段、反射光谱特征参数、拟合模型

39

X591

国家国防基础科研计划项目16ZG6101 ,西南科技大学龙山人才计划专项17LZXJ02

2019-05-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

1143-1147

暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

39

2019,39(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn