10.3964/j.issn.1000-0593(2017)12-3703-06
布谷鸟搜索的润滑脂特征红外光谱波段优选技术
针对润滑脂分类,提出了基于布谷鸟搜索的红外光谱波段筛选方法,有效剔除了易受噪声等环境影响的红外光谱区域、实现了对庞大光谱数据进行特征选择和降维处理、通过筛选光谱最优波段建立了更加准确高效的润滑脂分类模型.以三类不同稠化剂润滑脂的红外光谱数据为研究对象,采用主成分分析法(PCA),对不同波段的红外光谱数据进行压缩,以提取的红外光谱主要成分作为输入,润滑脂稠化剂类别作为输出,通过布谷鸟搜索法(CS),对主要成分权重和分类核参数进行准确度寻优训练,建立分类识别预测模型.对所建立的模型再进行分类准确性测试,得到模型测试结果准确度,建立红外光谱波段和测试准确度之间的联系,得到润滑脂最优类别识别模型和最优分类波段.对所建立的模型再进行分类准确性测试,结果显示:经过布谷鸟搜索法训练加权后的主要特征呈现明显聚类现象,可以得到分类核,实现对润滑脂种类的准确识别;在搜索过程中提供了区分不同润滑脂的推荐波段和特征峰,使对润滑脂的正确鉴别概率由全波段建立分类模型的94.44%提高到筛选后特征波段建立分类模型的100%,并减少了运算时间、提高了搜索运行效率.
红外光谱、润滑脂、布谷鸟算法、分类模型
37
O657.3(分析化学)
国家自然科学基金项目5157181;北京市自然科学基金项目2172053
2017-12-25(万方平台首次上网日期,不代表论文的发表时间)
共6页
3703-3708