期刊专题

10.3964/j.issn.1000-0593(2016)12-3931-06

基于离散萤火虫算法的近红外波长优选方法研究

引用
近红外光谱数据量大,需要进行压缩,以降低建立光谱校正模型的计算复杂度,提高模型精度和稳健性。为此,提出了一种基于离散萤火虫算法(discrete firefly algorithm)的近红外光谱波长变量筛选方法。首先采用蒙特卡罗方法剔除异常值,并应用Kennard-Stone法进行校正样本的选择。对通用萤火虫算法进行离散化处理,改进了吸引度的自适应公式,在移动公式中增加了牵引权重,以适应离散化处理的影响和优化算法,并在离散萤火虫算法中加入精英保留策略,加快算法的收敛速度。实验中找到 DFA算法中的各项参数中的最佳值。通过离散萤火虫算法优选波长变量,建立发酵液中丁二酸含量的近红外光谱偏最小二乘回归(partial least squares regression)校正模型。与标准遗传算法(genetic algorithm)优选波长方法进行了比较。结果显示,基于离散萤火虫算法的波长优选方法所建立的 PLS 校正模型,其校正集的相关系数(R2c )为0.986,RMSEC为0.409,预测集的相关系数(R2p)为0.969,RMSEP为0.458,模型稳健性和精度都要优于全光谱建模以及遗传算法波长优选方法。显示了DFA在近红外光谱数据筛选方面的优越性。

离散萤火虫算法、近红外光谱、波长选择、丁二酸发酵

36

O657.3(分析化学)

国家863计划项目2015AA021005;江苏省产学研联合创新基金项目BY2014005-07

2017-03-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

3931-3936

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

36

2016,36(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn