10.3964/j.issn.1000-0593(2016)12-3931-06
基于离散萤火虫算法的近红外波长优选方法研究
近红外光谱数据量大,需要进行压缩,以降低建立光谱校正模型的计算复杂度,提高模型精度和稳健性。为此,提出了一种基于离散萤火虫算法(discrete firefly algorithm)的近红外光谱波长变量筛选方法。首先采用蒙特卡罗方法剔除异常值,并应用Kennard-Stone法进行校正样本的选择。对通用萤火虫算法进行离散化处理,改进了吸引度的自适应公式,在移动公式中增加了牵引权重,以适应离散化处理的影响和优化算法,并在离散萤火虫算法中加入精英保留策略,加快算法的收敛速度。实验中找到 DFA算法中的各项参数中的最佳值。通过离散萤火虫算法优选波长变量,建立发酵液中丁二酸含量的近红外光谱偏最小二乘回归(partial least squares regression)校正模型。与标准遗传算法(genetic algorithm)优选波长方法进行了比较。结果显示,基于离散萤火虫算法的波长优选方法所建立的 PLS 校正模型,其校正集的相关系数(R2c )为0.986,RMSEC为0.409,预测集的相关系数(R2p)为0.969,RMSEP为0.458,模型稳健性和精度都要优于全光谱建模以及遗传算法波长优选方法。显示了DFA在近红外光谱数据筛选方面的优越性。
离散萤火虫算法、近红外光谱、波长选择、丁二酸发酵
36
O657.3(分析化学)
国家863计划项目2015AA021005;江苏省产学研联合创新基金项目BY2014005-07
2017-03-02(万方平台首次上网日期,不代表论文的发表时间)
共6页
3931-3936