10.3964/j.issn.1000-0593(2016)04-1163-07
一种新的空谱联合探测高光谱影像目标探测算法
高光谱遥感影像不但具有高分辨率的空间信息还包含连续的光谱信息,因此在目标探测领域具有独特的应用优势。传统的高光谱遥感影像目标探测侧重于光谱信息的应用,形成了确定性算法和统计学算法。确定性算法通过计算目标光谱与待检测光谱之间的距离来查找目标,不能检测亚像素目标,而且容易受到噪声的影响;统计学目标检测计算背景统计特性,通过探测异常点来检测目标,可以检测亚像素目标和小目标,但容易受到目标尺寸的影响,不能很好的检测大目标。随着高光谱遥感影像的空间分辨率的增加,探测目标已有亚像素目标逐步转换为单像素及多像素目标,此时,在高光谱图像中,相同类别的地物在空间分布上呈现聚类特性,因此,在利用高光谱遥感影像进行目标探测时,需要将其空间信息融入算法中。将空间特征引入传统目标探测算法。提出了一种新的空谱结合的高光谱目标探测算法,将传统的基于统计的目标探测算子与空域邻域聚类算法相结合,首先利用目标探测算子将影像划分为潜在目标区域与背景区域;通过计算潜在目标区域的质心,以质心为中心进行邻域聚类,剔除潜在目标区域中的背景区域,通过迭代计算获取最终目标探测结果。传统的基于统计的目标探测算子,将整个探测区域定义为背景区域,实现对背景区域的统计特征提取,而该方法将背景区域与潜在目标区域分离,剔除了目标区域对背景区域的统计干扰。将本算子与传统的约束能量最小化算子和自适应余弦探测算子进行分析比较可知,该算子的大目标探测性能优于传统的统计算子。
目标探测、空谱联合算子、高光谱影像处理、邻域聚类、统计学算子
36
TP751.1(遥感技术)
国家自然科学基金项目41301382,41301480,61401439;教育部人文社会科学研究青年基金项目14YJCZH172;陕西省自然科学基础研究计划项目2014JQ5181;西安石油大学创新基金项目YS29031606
2016-08-03(万方平台首次上网日期,不代表论文的发表时间)
共7页
1163-1169