10.3964/j.issn.1000-0593(2015)08-2136-05
基于主动学习的玉米种子纯度检测模型更新
种子纯度反映种子品种在特征特性方面典型一致的程度,提高种子纯度检测的准确性和可靠性对保证种子的质量具有重要的意义。高光谱图像技术可以同时反映种子的内部特征和外部特征,在农产品无损检测中已经得到广泛应用。利用近红外高光谱图像实现农产品无损检测的实质就是建立光谱信息与农产品品质参数之间的数学模型关系。但光谱信息易受环境、时间的影响,当待测样本的产地或者年份发生改变时光谱信息也随之改变,导致建立的模型的稳定性变差、泛化能力减弱。针对这一问题,采用主动学习算法选择具有代表性的待测样本,最终以添加最少最优的样本数来扩大原模型的样本空间,从而实现模型的快速更新,提高模型的稳定性,同时与基于随机选择算法(RS)和Kennard‐Stone算法(KS)的模型更新效果进行比较。实验结果表明:在不同样本集划分比例下(1∶1,3∶1,4∶1),利用主动学习添加40个新样本更新后的2010年的玉米种子纯度检测模型对2011年新样本的预测精度由47%,33.75%,49%提高到98.89%,98.33%,98.33%;利用主动学习添加56个新样本更新后的2011年的玉米种子纯度检测模型对2010年新样本的预测精度由50.83%,54.58%,53.75%提高到94.57%,94.02%,94.57%;同时基于主动学习算法的模型更新效果明显优于RS和KS。因此基于主动学习算法实现玉米种子纯度检测模型的更新是可行的。
近红外高光谱图像、主动学习、玉米种子、模型更新、纯度检测
O657.3(分析化学)
国家自然科学基金项目61271384,61275155;江苏省“青蓝工程”项目资助
2015-08-28(万方平台首次上网日期,不代表论文的发表时间)
共5页
2136-2140