期刊专题

10.3964/j.issn.1000-0593(2012)09-2377-05

人工神经网络结合近红外光谱用于木材树种识别

引用
测量了不同产地及品种的89个木材样品的近红外光谱,并分别使用反向传播人工神经网络(back propagation artificial neural networks,BPANN)与广义回归神经网络(generalized regression neural network,GRNN)建立了NIRS树种识别模型.通过方差分析分别选择两种神经网络所用参数,并采用最优参数进行网络训练.考虑到样品光谱的差异,对含不同水平白噪声与不同水平偏置的光谱进行模拟,并使用建立的模型对模拟光谱进行预测.发现两种神经网络模型均有较好的预测结果,其中BPANN模型,对含偏置水平不高于2%、噪声水平不高于4%的模拟光谱识别正确率在97%以上;GRNN模型,对含偏置水平不高于2%、噪声水平不高于4%的模拟光谱识别正确率在99%以上.

人工神经网络、木材树种识别、近红外光谱、方差分析

32

O657.3(分析化学)

北京市属高等学校人才强教计划项目PHR20100718;北京市自然科学基金项目6092021;质检公益性行业科研专项200910218

2012-12-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

2377-2381

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

32

2012,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn