期刊专题

10.20035/j.issn.1671-2668.2022.06.004

基于路警数据与LightGBM算法的高速公路行程时间预测

引用
行程时间预测是支撑高速公路交通运行评价、行车诱导、交通智能化管控等应用的关键技术,在高速公路交通大数据日渐丰富的背景下,如何保障高效、准确的行程时间预测结果值得关注.为弥补现有预测数据单一、实时性不佳等问题,文中提出一种基于LightGBM(Light Gradient Boosting Machine)算法和路警数据融合的行程时间预测模型,基于多源数据,构建交通量、大车占比、天气、日期类型、车型、路段长度、平均行程时间等多维特征集;利用山东济广(济南—广州)高速公路ETC(电子不停车收费系统)门架系统(出入口收费站和路段ETC门架)、视频卡口等数据进行行程时间预测模型训练与验证,采用均方根误差RMSE、平均绝对误差MAE、平均绝对百分比误差MAPE及运算时间4项评价指标对该模型与最邻近(KNN)、随机森林(RF)、支持向量机回归(SVR)3种常用机器学习算法的预测结果进行对比,结果表明采用该模型,4个验证路段的RMSE为5.78,分别比KNN、RF、SVR模型降低22.8%、13.5%、21.0%,运算速度分别提高-60%、98%、96%,可应用于高速公路网实时行程时间预测,并支持面向不同车型的差异化行程时间信息服务.

高速公路、行程时间预测、路警融合数据、LightGBM算法、机器学习

U491.14(交通工程与公路运输技术管理)

山东省交通运输厅科技计划项目2020BZ02-05

2023-01-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

13-19,31

相关文献
评论
暂无封面信息
查看本期封面目录

公路与汽运

1671-2668

43-1362/U

2022,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn