期刊专题

10.3969/j.issn.1671-2668.2008.01.010

基于贝叶斯网络模型的交通状态预测

引用
城市的交通状态是可以预测的.有效的交通状态预测能从很大程度上优化交通状态,减少交通阻塞.贝叶斯网络(Bayesian Networks,BN)是目前不确定知识和推理领域最有效的理论模型之一.文中提出了一种基于贝叶斯网络模型理论的交通状态预测方法,在综合考虑交通阻塞成因的基础上构建网络模型.在已有的交通状态数据的基础上提出基于贝叶斯法则的学习算法,并通过计算变量间的条件概率来计算交通阻塞发生的可能性,达到预测的目的.

公路交通、贝叶斯网络、交通状态、预测模型

U491.1(交通工程与公路运输技术管理)

国家自然科学基金60673108

2008-04-25(万方平台首次上网日期,不代表论文的发表时间)

共3页

29-31

相关文献
评论
暂无封面信息
查看本期封面目录

公路与汽运

1671-2668

43-1362/U

2008,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn