期刊专题

10.3969/j.issn.1674-9057.2022.01.027

基于LMD改进GPR优化的网络流量预测

引用
针对蚁群算法容易陷入局部最优、网络流量预测准确性不高的问题,提出一种基于局部均值分解(LMD)改进蚁群优化高斯过程回归(GPR)的预测算法.考虑到网络流量的复杂性,使用LMD将网络流量分解成多个相关的子序列;通过GPR对网络流量子序列进行建模分析;用蚁群算法优化超参数,引入视线角度参数控制蚂蚁搜索时的视线范围,提高蚂蚁的局部搜索能力;通过莱维飞行更新蚂蚁搜索的步长,提高蚁群算法搜索的全局性.实验表明,改进后的蚁群算法搜索到了更优的值,与原有GPR算法相比,LMD分解后改进蚁群优化GPR的算法来预测网络流量,更好地拟合了网络流量的走向,提高了预测的效果,对维护网络安全具有一定的作用.

LMD、高斯过程回归、蚁群算法、视线、莱维飞行、网络流量

42

TP391(计算技术、计算机技术)

广西自然科学基金项目;广西高校中青年教师科研基础能力提升项目;赛尔网络下一代互联网技术创新项目

2022-07-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

236-241

暂无封面信息
查看本期封面目录

桂林理工大学学报

1674-9057

45-1375/N

42

2022,42(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn