期刊专题

10.3969/j.issn.1673-808X.2009.03.013

SVM模式识别技术及在机械故障诊断中的应用进展

引用
支持向量机(Support Vector Machines,SVM)是一种基于统计学习理论的新型机器学习方法,对小样本决策具有较好的学习推广性.为在机械故障诊断中更好地运用该方法,从基于支持向量机理论的模式识别技术和机械故障诊断中应用两方面,综述了近年来支持向量机国内外研究应用现状,分析了技术特点、存在问题、解决方案及其在机械工程领域应用前景.

支持向量机、机器学习、模式识别、故障诊断

29

TH17

国家自然科学基金50805028;广西自然科学青年基金0832082

2009-07-22(万方平台首次上网日期,不代表论文的发表时间)

共4页

256-259

相关文献
评论
暂无封面信息
查看本期封面目录

桂林电子科技大学学报

1673-808X

45-1351/TN

29

2009,29(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn