期刊专题

10.3969/j.issn.1673-808X.2007.04.008

一种求解TSP问题的改进遗传算法

引用
遗传算法(GA)是基于生物进化论的一种全局优化搜索算法,是求解TSP问题的一种方法,但它存在如何较快地找到最优解并防止"早熟"收敛的问题.结合TSP问题最优解一般包含城市与其最近城市的相连的特点,提出了贪婪两点插入变异算子,改进了启发式杂交算子,并根据个体适应度与群平均适应度根据个体的适应度赋予不同的变异概率,使得较好的个体探测路径,较差个体开发新个体.对初始群体作局部优化提高其质量加快算法的收敛速度,最优个体连续几代一直保留,则采用局部微调算子使子代中的最优个体跳离局部解.通过实验分析,改进的算法能较快的收敛到TSP问题的已知最优解;其测试结果与国际标准测试库TSPLIB中的最优路径相比,或接近或优于.

遗传算法、TSP问题、贪婪变异算子、启发式杂交算子

27

TP18(自动化基础理论)

国家自然科学基金10501009;10661005

2007-10-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

287-290

相关文献
评论
暂无封面信息
查看本期封面目录

桂林电子科技大学学报

1673-808X

45-1351/TN

27

2007,27(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn