期刊专题

10.3969/j.issn.1673-808X.2004.03.001

2m次贝塞尔曲线降一次逼近及误差分析

引用
在计算机图形学、计算机辅助几何设计、计算机辅助制造和计算机辅助设计领域中,贝塞尔曲线降次逼近是一个基本而重要的课题,它在减少系统数据存储量、增加系统稳定性和提高计算效率等方面有着重要应用.通过对2m次平面参数贝塞尔曲线降一次逼近问题的分析研究,给出了用2m-1次贝塞尔曲线逼近2m次贝塞尔曲线的"封闭"的计算公式,推广了文献[1]中给出的降一次逼近时的误差估计公式,并得到了"封闭"的形式.为CAD系统的用户和计算机图形学、计算机辅助几何设计、计算机辅助制造和计算机辅助设计领域的研究人员使用计算逼近曲线控制顶点和逼近误差的封闭形式提供了方便.而且对于事先给定的容许误差,利用文中的方法,借助于贝塞尔曲线离散分割算法可以很容易求出满足要求的逼近曲线.

2m次贝塞尔曲线、降次、拐点、分割算法、分段逼近

24

TP391.41(计算技术、计算机技术)

国家自然科学基金60273054;高等学校博士学科点专项科研项目20020335070;浙江省自然科学基金698022

2004-07-31(万方平台首次上网日期,不代表论文的发表时间)

共5页

1-5

暂无封面信息
查看本期封面目录

桂林电子工业学院学报

1673-808X

45-1351/TN

24

2004,24(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn