期刊专题

10.3772/j.issn.1002-0470.2023.09.001

基于压缩卷积神经网络的心律不齐分类方法

引用
心律不齐是一种常见的心脏疾病,严重时可能会危及生命,因此对该疾病开展早期筛查和分类在临床医学中具有重要意义.搭载心电信号(ECG)传感器的可穿戴设备凭借低成本和便捷等特点,是实现日常心脏健康监测的理想平台之一.然而受制于计算能力等因素的限制,可穿戴设备需要将数据上传到云端进行分析,增加了等待时延和用户隐私泄露风险.另一方面,现有心律不齐分类算法在训练时受疾病样本分布不平衡等因素的影响,在识别部分异常病症时的表现不尽人意,限制了其应用范围.为解决上述问题,本文提出了一种基于压缩卷积神经网络的心律不齐分类算法,增强了其在移动平台上的部署能力.同时在训练过程中通过将类别先验分布引入损失函数中,提升了算法对异常病症的识别能力.实验结果表明,本文提出的压缩模型相比经典模型在减少98.2%参数量的同时,超越了许多相关工作取得了0.759 的宏F1 值.

可穿戴设备、心律不齐分类、压缩卷积神经网络、类别不平衡、损失函数

33

TP391;R541;R737.33

国家自然科学基金61672498

2023-10-30(万方平台首次上网日期,不代表论文的发表时间)

共10页

895-904

暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

33

2023,33(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn